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ABSTRACT
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the novel 
coronavirus disease 2019 (COVID-19) pandemic that lacks globally accessible effective antivirals or 
extensively available vaccines. Numerous clinical trials are exploring the applicability of repurposed 
monoclonal antibodies (mAbs) targeting cytokines that cause adverse COVID-19-related pathologies, 
and novel mAbs directly targeting SARS-CoV-2. However, comorbidities and the incidence of cytokine 
storm (CS)-associated pathological complexities in some COVID-19 patients may limit the clinical use of 
these drugs. Additionally, CS-targeting mAbs have the potential to cause adverse events that restrict their 
applicability in patients with comorbidities. Novel mAbs targeting SARS-CoV-2 require pharmacological 
and toxicological characterization before a marketable product becomes available. The affordability of 
novel mAbs across the global economic spectrum may seriously limit their accessibility. This review 
presents a perspective on antibody-based research efforts and their limitations for COVID-19.
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Introduction

With the exception of the swine influenza pandemic of 1918, 
the novel coronavirus disease 2019 (COVID-19) pandemic has 
thus far caused one of the greatest humanitarian and public 
health challenges worldwide. The severe damage inflicted on 
the world economy by the COVID-19 pandemic has initiated 
a global recession precipitated by the necessity to place at least 
one-third of the global population under lockdown.1,2 The 
origin of the pandemic has been linked to a “wet market” 
that sold seafood, wild animals, and/or their products in 
Wuhan, Hubei Province, China. Following the initial outbreak 
of the disease, the Chinese Center for Disease Control and 
Prevention isolated the novel virus from a bronchoalveolar 
lavage sample taken from a patient in Wuhan.3 The virus was 
later confirmed to be a novel enveloped RNA coronavirus 
(CoV); however, little was known then about the gravity of 
the public health disaster that was to follow 3As of 28-February 
-2021, approximately 114 million COVID-19-positive cases 
have been reported globally, and more alarmingly, more than 
2.5 million lives have succumbed to COVID-19.4

While the standard of care is continuing to evolve, there is 
currently no cure for COVID-19. As of 2 March, 2021, mono
clonal antibodies – Bamlanivimab, Casarivimab – Imdevimab 
combination have been granted Emergency Use Authorization 
approval from the US-FDA, of which two are monoclonal 
antibody (mAbs) based treatment options for the nonhospita
lized patients with mild to moderate COVID-195). Whereas 
three vaccines have been authorized by the CDC, as of 
2 March, 2021,6 however, worldwide availability of efficacious 

vaccines will likely take several years before the pandemic may 
be stopped in its tracks.7 Sustained efforts from many research
ers worldwide are rapidly yielding prospects of successful vac
cines, antiviral agents, and potentially efficacious supportive 
therapies.8–10

Scientific advancements over the past several decades have 
proven that antibody-based therapeutics can be a panacea for 
many serious diseases. Historically, convalescent blood-based 
products (CBPs) have been used effectively during pandemics; 
there is evidence of clinical successes based on a meta-analysis 
of CBP usage to control the Spanish flu stands as a positive 
testament.11 Although the advent of antibiotics has supplanted 
the use of CBPs for bacterial disease outbreaks, the successful 
use of immunotherapeutic strategies was yet again evidenced 
during the H5N1 swine flu pandemic of 2009.12 However, the 
inconclusive therapeutic benefits of CBPs for the MERS, SARS, 
and Ebola outbreaks cast doubts on their usage.11 More 
recently, considering the development of immensely powerful 
in vitro screening and selection methods, in addition to the 
availability of engineered mAbs, several unmet medical needs 
and a number of diseases, particularly cancer, can now be 
successfully treated using an immunotherapeutic approach.13 

As such, there is sustained interest in antibody-based thera
peutics as an option for treating dangerous infectious diseases, 
including those that eventually lead to pandemics. The success
ful treatment of the COVID-19-stricken ex-president of the 
United States – Donald Trump – who received a cocktail of 
SARS-CoV-2-specific mAbs, and thereafter other high-profile 
COVID-19 patients, reinforces the faith in ongoing research 
efforts on this treatment option.14–16 However, this approach 
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has serious limitations that may impede clinical development 
and universal applicability, particularly when fighting recently 
emerged viral pandemics. 17 The advantages and disadvantages 
of development and application of mAb-based therapeutic 
strategies for tackling a pandemic is summarized under Table 1

This review presents asummarized perspective on the 
background of SARS-CoV-2, comorbidities in COVID-19 
patients, CS and adverse events associated with mAbs tar
geting Cytokine Storm (CS), when administered for the 
clinical management of COVID-19 patients with preexisting 
illnesses.

Virology, pathogenesis, and clinical symptoms

As a virus group, CoVs possess a linear positive-stranded RNA 
genome of ~30 kb in size and ~125 nm in diameter. There are 
four known CoV genera. α-Coronaviruses include human cor
onavirus NL63 and viruses that cause porcine epidemic diarrhea, 
canine coronavirus disease, and transmissible gastroenteritis.18 

β-Coronaviruses include SARS-CoV, MERS-CoV, mouse hepa
titis virus, and SARS-CoV-2, and γ- and δ-coronaviruses are 
associated with avian diseases and porcine deltacoronavirus, 
respectively.19–21 Although most CoVs have been identified in 
animals, three have successfully crossed into humans. Those 
viruses that have crossed into humans, and particularly SARS- 
CoV, have been associated with potentially fatal pneumonias 
and rapidly spreading respiratory infections,22 MERS,23 and 
SARS-CoV-2.24

It is widely accepted that SARS-CoV-2 enters host cells by 
binding to the angiotensin converting enzyme-2 (ACE2) receptors 
in the nasal epithelium, and mucous membrane of the lower 
respiratory tract and lungs; however, other host factors such as 
the presence of sialic acid in the host cell membranes also posi
tively influences S protein–receptor interactions. Additionally, 
CoVs penetrate host cells at neutral- or low-pH environments, 
followed by passage of the nucleocapsid and release of the viral 
genome. This event initiates the virus replication cycle, which 
leads to the viremic phase of the infection.25,26 Clathrin- 
mediated endocytosis has also been shown to play a role in the 
mechanism of virus entry into host cells.19–21,27 Interestingly, both 
SARS-CoV and SARS-CoV-2 have affinity for the human ACE2 
(hACE2) receptor, which facilitates host cell invasion. A furin 
cleavage site detected within the SARS-CoV-2 S protein is specu
lated to be the basis for the comparatively more extensive tissue 
tropism observed with this virus arguably makes SARS-CoV-2 
more pathogenic than SARS-CoV.28

Many investigations have postulated that, similar to SARS- 
CoV, the S protein in SARS-CoV-2 is the major pathogenic 
factor responsible for attachment preceding host cell 
invasion.29 To further lend support to this hypothesis, these 
authors have used computational studies and identified 24 
stretches of conserved peptides within the SARS-CoV 
-2-derived S protein.29 These conserved peptides also appear 
to be common across other related CoV strains. Of these 
peptide stretches, 20 bear important B and T cell epitopes 
that are predicted to be relevant for immunoprotection.29 

The pathogenicity of SARS-CoV-2 is also explained by the 
partially open conformation of S protein trimers. SARS-CoV 
and SARS-CoV-2 have a shared sequence homology of 75%, 
and additional findings suggest that neutralizing antibodies 
against the former may cross-protectively prevent host cell 
attachment and entry of SARS-CoV-2.28,30,31 Compelling evi
dence from numerous COVID-19 vaccine research studies 
have corroborated the immunogenicity and potential immu
noprotective properties of several epitopes located within the 
S protein.32,33 Moreover, structural analysis and studies into 
the molecular pathogenesis of SARS-CoV-2 suggest the pre
sence of two virus-binding hotspots in the S protein receptor- 
binding domain (SARS-CoV-2-RBD). Additionally, the ACE2 
binding ridge within RBD has a compact conformation and is 
accompanied by several residue changes that indicate the sig
nificantly higher binding affinities of SARS-CoV-2-RBD to the 
ACE2 receptor. The uniqueness of RBD is considered a major 
factor contributing to the infectivity and host range of SARS- 
CoV-2.34,35 Early investigations that focused on identifying 
anti-SARS-CoV-2 neutralizing antibodies suggested that RBD- 
binding antibodies are strongly correlated with virus neutrali
zation capability.36,37 Collectively, these studies explain the 
predominant molecular clues that elucidate the efficiency 
with which both viruses can easily spread among humans. In 
summary, these findings suggest that the S protein RBD is 
among the most suitable antigenic candidates, and it is being 
targeted for generating potentially neutralizing antibodies 
against SARS-CoV-2.

The prominent clinical symptoms in patients with 
COVID-19 include fever (98%), cough (76%), and myalgia 
or fatigue (44%).38,39 Less prominent symptoms include spu
tum production (28%), headache (8%), hemoptysis (5%), and 
diarrhea (3%). Furthermore, 50% of COVID-19 patients 
develop dyspnea, which has been consistently reported along
side fever and cough.38,39 Additionally, atypical symptoms, 
such as headaches, confusion, rhinorrhea, sore throat, delir
ium, hemoptysis, gastrointestinal bleeding, vomiting, and 

Table 1. Summary of advantages and disadvantages of mAb-based therapeutic strategies.

Advantages Disadvantages References

Monoclonal Antibodies 
(mAbs)

(a) Specificity in molecular interactions and engage
ment with therapeutic targets

(b) Long plasma half-life facilitating fewer dosing 
repeat

(c) Shorter timelines for testing and approval when 
compared to small therapeutic molecules.

(d) Marked improvements in respiratory function in 
COVID-19 patients.

(e) Rapid defervescence.

(a) Possible resistant viral mutations can alter mAb affinities and 
efficacy

(b) Adverse drug reactions are severe and often life-threatening
(c) Varying bioavailabilities may affect effectivness
(d) Affordability and accessibility across global economic spec

trum and lower income countries is questionable

112,167– 
171
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diarrhea have been reported in patients with comorbidities 
such as heart disease, preexisting lung disease, diabetes melli
tus, severe obesity, chronic kidney, or liver disease, and com
promised immune system.40–44 In the following sections, we 
review the comorbidities associated with patients with 
COVID-19 and emphasize on neurological and pediatric 
patients.

Comorbidities associated with COVID-19

With no established standard of care and most treatment choices 
being either supportive or investigational, the most worrying 
aspect of the COVID-19 pandemic is the significant incidence of 
comorbidities in patients requiring intensive care.45,46 Early 
reports of pervasive mortalities in elderly patients with comorbid
ities (8 out of 10) such as diabetes and heart and lung diseases 
underscored the apparent vulnerability of elderly individuals.47,48 

Other clinically significant comorbidities include but are not 
limited to chronic lung disease or moderate-to-severe asthma; 
serious heart conditions; immunosuppression, including cases of 
poorly controlled human immunodeficiency virus (HIV) or 
AIDS; prolonged use of corticosteroids; and severe obesity (body 
mass index ≥40).49 During the course of the ongoing pandemic, 
several studies have focused on cohorts of COVID-19 patients 
who died from severe pneumonia.50 In a cohort study of 1,591 
COVID-19 patients from Italy, the median age of the patients was 
63 (56–70) years; 1,304 (82%) were male, and 509 (49%) had 
hypertension.51 Similarly, in another cohort study conducted in 
the USA, the median age of the patients was 63 years; 60.6% were 
males.52 In this study, the most common comorbidities were 
hypertension (n = 3,026, 56.6%), obesity (n = 1,737, 41.7%), and 
diabetes mellitus (n = 1,808, 33.8%).52 Ghisolfi et al. presented an 
intriguing analysis of predicted COVID-19 fatality rates, wherein 
higher case fatality rates were more likely to be seen in higher- 
income countries.53 An analysis by Hashim et al. based on 
a survey of COVID-19 mortalities across 93 countries provided 
compelling evidence on the association between higher case mor
talities and preexisting health complications such as Alzheimer’s 
disease, lung cancer, asthma, and chronic obstructive pulmonary 
disease in addition to advancing age.54 These findings reaffirm the 
similarities between COVID-19 and MERS and SARS with respect 
to the occurrence of more serious clinical outcomes in individuals 
with co-existing conditions.55–57 These authors also reported that 
men exhibit a higher susceptibility to these infections than 
women. Overall, these findings suggest that emergency medical 
support and treatment choices for COVID-19 patients with 
chronic comorbidities remain a serious challenge.49 This may 
complicate the standard of care for patients with COVID-19 
who are receiving multiple prescriptions for their preexisting 
medical conditions.

Vulnerability of children

Although COVID-19 is frequently asymptomatic in children, 
some of the pathological manifestations that have been 
observed thus far are quite different from those observed wit
nessed in adults, which warrants further investigation. One of 
the most comprehensive studies on pediatric COVID-19 
reported clinical symptoms that are considerably different 

from those observed in adults, include vomiting, colic, and 
diarrhea. Of the 58 children investigated in one study, 29 
developed shock and required intensive clinical interventions 
such as inotropic support and fluid resuscitation.58 Although 
most cases of pediatric COVID-19 were initially mild, a more 
severe clinical presentation termed “multisystem inflammatory 
syndrome” in children (MSI-C) has since been documented. 
Furthermore, recent reports suggest that some children who 
recover from SARS-CoV-2 infection develop pediatric MSI-C, 
which is characterized by clinical presentations such as 
Kawasaki disease shock syndrome, toxic shock syndrome, 
myocarditis, and macrophage activation syndrome.59–61 

A recent report indicated that a low number of pediatric 
COVID-19 cases were associated with severe pulmonary com
plications that required intensive care during hospitalization.62

COVID-19 is spawning a neurological pandemic

Recent clinical observations indicated that some severely ill and 
recovering COVID-19 patients may manifest neurological 
signs,63–65 including minor central nervous system manifestations 
such as headache and dizziness and more serious symptoms such 
as impaired consciousness, ataxia, acute cerebrovascular disease, 
and epilepsy. A study of 37 patients with COVID-19 in France 
reported neurological manifestations of altered consciousness 
(73%), confusion (37%), and agitation (19%).66 The most striking 
pathological finding observed in 54% of the patients was intracer
ebral hemorrhagic lesions.66 Peripheral nervous system manifes
tations such as hypogeusia, hyposmia, neuralgia, and skeletal 
muscular symptoms have also been reported.63–65 A recent 
hypothesis attributed more serious neurological outcomes such 
as acute necrotizing encephalopathy (ANE),67 ischemic stroke,68 

encephalopathy,69 meningoencephalitis,70 and Guillain–Barré 
syndrome (GBS)71 to CSs and/or a compromised blood–brain 
barrier that developed during disease progression. However, 
unlike in the case of SARS-CoV, there is still no empirical evi
dence that has definitively corroborated the entry of SARS-CoV-2 
into the brain. Clinical studies involving patients with SARS-CoV 
infection have shown the presence of virus particles in brain 
specimens; these particles are mostly localized in neurons.72 

Unlike SARS-CoV, the detection of viral RNA in the cerebrosp
inal fluid has thus far been demonstrated in only a single-case 
report in which SARS-CoV-2 infection was associated with 
ANE.73 Based on statistical data from MERS and SARS as 
a prediction model for the association of neurological involve
ment and infection with SARS-CoV-2, the possibility of 
a neurological pandemic is imminent.74 This finding adds to the 
uncertainties that could have a bearing on the prognosis of 
patients with COVID-19. In the near future, it is likely that 
neurological and other complications will further aggravate the 
burden on healthcare systems due to the extra patient care and 
management needs.

Cytokine storm, comorbidities and COVID-19

In COVID-19 patients, the severity of the disease correlates 
well with the onset of exaggerated immune response that is 
characterized by higher concentrations of circulating 
cytokines.75,76 The trigger for such CSs (CS) is an uncontrolled 
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immune response resulting in continuous activation and 
expansion of effector immune cells like lymphocytes, and 
macrophages. The exaggerated activation induces these cells 
to produce enormous amounts of pro-inflammatory cytokines 
and related molecules thus resulting in dire immunological 
events. The severity of disease manifestation is consistently 
attributable to the actions of heightened levels of circulating 
pro-inflammatory cytokines – IL-1, IL-6, IL-18, IFN-γ, and 
TNF-α.77 Assessment of cytokine levels in a cohort of 41 
COVID-19 patients indicated high circulating levels of IL1β, 
IFNγ, IP10, and chemokine – MCP1.24 These cytokines along 
with related pro-inflammatory molecules are predominantly 
linked to activation of T-helper-1 (Th1) cell responses24 . 
Especially patients with excessive circulating levels of cytokines 
and chemokines – G-CSF, IP-10, TNFα, MCP1, MIP1 required 
intensive care hospitalization clearly associating the link 
between CS and disease severities.24 Whereas CSs are not 
novel to COVID-19 infections, they have previously been 
observed during SARS-CoV78 and MERS-CoV pandemics as 
well.79 The uniqueness of CS during COVID-19 infection is an 
increased secretion of T-helper-2 (Th2) related cytokines 
(viz.) – IL4 and IL10, which are known to suppress inflamma
tion. Such a phenomenon was not observed in SARS-Co-V 
patients.24 Moreover, numerous multi-centric retrospective 
studies have observed that increases in the pro-inflammatory 
cytokine IL-6 correlating with increased severity in COVID-19 
patients.80–82 Alarmingly, eight critically ill pediatric (2 months 
to 15 cases) COVID-19 cases in China demonstrated increased 
levels of the cytokines – IL-6, IL-10, and IFN-γ83 . This has 
been further corroborated in similar studies done elsewhere.84

While CSs have been previously reported during SARS-CoV 
and MERS, this is neither novel nor unique to Co-V infections 
alone.85 Cytokine storms have been reported in several viral 
infections including influenza infection caused by H5N186 

H1N1 viruses.87 While the severity of COVID-19 disease man
ifestation is more commonly seen in immunosuppressed indi
viduals, and elderly patients with history of obesity, diabetes, 
renal failure, lung diseases and other comorbidities, the mole
cular undercurrents that contribute to disease severity is begin
ning to be understood.88 For instance, obese COVID-19 
patients with an ongoing CS additionally release a larger subset 
of pro-inflammatory molecules – particularly, the adipokines 
from their visceral fat deposits.89 Adipokines are known to 
affect the immune response, impair chemotaxis, and alter the 
differentiation of macrophages. The imbalance between the 
levels of anti- and pro-inflammatory adipokines produced 
from thoracic and visceral fat deposits are well linked to 
other comorbidities including but not limited to cardiovascular 
disease,90 nonalcoholic fatty liver disease, and type 2 diabetes.91 

Adipose tissue also expresses the cytokine – IL-6 receptor, as 
well as produces IL-6, which, obviously may be contributing 
factors to exaggerated disease manifestation in COVID-19- 
stricken obese patients.92

Abnormalities in blood coagulation pathways have also 
been reported in some COVID-19 patients leading to the coin
ing of the term – COVID-19-associated coagulopathy 
(CAC).93–95 Elevated circulating levels of prothrombin, fibri
nogen and D-dimer, in addition to elevated pro-inflammatory 
markers such as C-reactive protein (CRP) and IL-6, are now 

widely accepted as the markers of CAC.96 Concomitantly, 
a heightened risk for inflammatory events, CS and CAS due 
to increased levels of IL-6 and CRP levels explained the linkage 
to increased mortalities in diabetic COVID-19 patients.97

The advancing age and disease severity is another undis
puted factor in COVID-19 disease severity. This is explainable 
by a differential expression of toll-like receptors (TLRs) with 
advancing age. TLRs in the host tissue bind and interact with 
components from invading pathogens and trigger host defense 
responses. However, with advancing age, the changes in TLR 
expression and polymorphism are implicated in altered and 
often inadequate response to vaccines in older adults. The 
paradoxical increases in basal levels of pro-inflammatory cyto
kines – IL-8 and IL-6 which are amongst the important com
ponents of the CS during COVID-19, further lending support 
to altered disease manifestation with advancing age.98–100

Interestingly, in the pediatric cases of COVID-19, prominently 
pathological manifestations resemble Kawasaki-like disease. 
Recent investigations point to differences in T cell subsets, ele
vated interleukin (IL)-17A levels coinciding with high levels of 
matrix metalloproteinase-1 (MMP-1), and MMP-10 levels sug
gesting that arterial inflammation is a prominent pathological 
feature in this sub-population.101 Additionally, significant neuro
logical characteristics were documented in a pediatric COVID-19 
patient in which the symptoms appeared to correlate with a CS 
and reduced levels of brain-derived neurotrophic factor.102

Emerging approaches with antibody-based treatments

Given the rapid generation of new research data, COVID-19 
treatment is a fast-evolving topic. In the absence of efficacious 
antiviral drugs at the start of pandemic, much of the options 
were supportive or adjunct therapies. However, recently, US- 
FDA has granted emergency use authorization approvals for 
more treatment options, of which two are novel virus- 
neutralizing mAbs. The most current updates on the standard 
of care for COVID-19 are available at NIH.5 Approximately 
3,600 clinical trials are currently underway worldwide. Despite 
this however, the most urgent missing link in the effective con
trol of the COVID-19 pandemic is an effective and affordable 
antiviral drug of choice as well as supportive therapy for the 
clinical management of different stages of the disease.103 At 
present, it is widely believed that an effective treatment for 
SARS-CoV-2 infection will emerge from a combination of the 
following strategies: repurposing previously approved and well- 
characterized antiviral drugs and/or novel and specific therapeu
tic molecules that directly disrupt different stages of the viral life 
cycle; deactivating receptor proteins located on host cells; 
administering fusion inhibitor peptide and protease inhibitors; 
administering neutralizing antibodies against SARS-CoV-2; and 
administering anti-ACE2 mAbs.104–106

Ejaz et al. have comprehensively reviewed ongoing clinical 
trials for different COVID-19 treatments.107 Other researchers 
have extensively reviewed repurposed antiviral drugs,108,109 novel 
antiviral agents,110,111 and SARS-CoV-2-targeting mAbs.112–114 

The present review partly focuses on the status, merits, and chal
lenges associated with mAbs targeting CSs, and challenges asso
ciated with the development of novel antibodies targeting SARS- 
CoV-2.
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mAbs targeting components of the cytokine storm and 
related pro-inflammatory mediators

Cytokines are diversified groups of small proteins that mediate 
intercellular signaling and communication by evoking various 
specific cellular responses as part of the innate or adaptive 
immune response.115 To achieve this, cytokines act through 
paracrine, endocrine, and autocrine activities and receptor bind
ing on target cells. For instance, some of the specific responses 
arising from cytokine stimulation include cell proliferation and 
differentiation, immune and inflammatory reactions, and 
angiogenesis.115 Although most of these effects are desirable, 
the excessive production of cytokines such as interferons 
(IFNs), interleukins (ILs), and TNF-α, along with other related 
groups of molecules such as chemokines and colony-stimulating 
factors (CSFs) may constitute “CSs,” which often lead to patho
logical and clinical manifestations.116 Some of these effects may 
become life-threatening or are associated with unfavorable clin
ical outcomes in patients.116 Typically, these exaggerated inflam
matory responses rapidly involve multiple organs, ultimately 
leading to complications such as hyperthermia, widespread 
fibrinous microthrombosis or disseminated intravascular coa
gulopathy (DIC), and eventually multiple-organ failure. 
Genome-wide association studies (GWAS) have provided 
a deeper insight into the individual differences linked to CSs. 
GWAS analyses suggest that polymorphisms within toll-like 
receptor 4 might play a role in increased susceptibility to certain 
pathogens and the severity of disease manifestation in some 
individuals. In fact, GWAS have identified a strong association 
between increased susceptibility to bacteremia, tuberculosis, and 
severe malaria in patients from The Gambia, Hong Kong, 
Kenya, Malawi, and Vietnam.117 As noted in some studies, 
polymorphisms in the cytokine-inducible SRC homology 2 
domain protein may negatively impact cytokine signaling.118 

A previous GWAS showed that certain variants in IFN-λ3 are 
associated with better treatment outcomes and spontaneous 
resolution of hepatitis C virus infections in patients of 
European ancestry compared with that in patients of African 
ancestry.119 Interestingly, comparative studies between patients 
with H5N1 and H1N1 infection reported elevated levels of 
several cytokines and related molecules, including MCP-1 (also 
known as CCL2), IFN-γ-inducible IP-10, MIG protein, and IL- 
8.120 In this study, upregulated cytokine expression during 
H5N1 infections was strongly correlated with adverse clinical 
outcomes. As a result of CSs, pathogen-induced pulmonary 
injury often progresses to acute lung pathology or its more 
severe form, acute respiratory distress syndrome.121 These com
plications often warrant intensive care during hospitalization of 
patients with more severe SARS-CoV-2 syndromes.121 One of 
the key drivers of proinflammatory activities during lung injury 
in patients is IL-1β, which is often associated with downstream 
mechanistic events that ultimately manifest in the form of severe 
bronchoalveolar pathology and edema.122 With respect to exces
sive cytokine release, IL-1β and TNF-α are the two perpetrator 
cytokines that regulate downstream molecular processes that 
ultimately cause severe damage to endothelial cells and asso
ciated extravasation of inflammatory cells as well as the produc
tion of secondary cytokine waves. This elevated inflammation 
causes widespread damage to tissue parenchyma and epithelial 

cells, which leads to the systemic release of large amounts of 
secondary cytokines, resulting in multiple organ dysfunction 
syndrome.123 Previously, CSs in six healthy volunteers in 
a clinical trial resulted in the need for emergency and intensive 
medical care.124 This observation warrants that new COVID-19 
drugs under clinical investigation must be closely monitored for 
such adverse events. Small-molecule drug – Anakinra, an IL-1 
receptor antagonist and several mAbs that are discussed in the 
later sections and listed in Table 2 can manage COVID-19 
associated CSs and therefore alter the course of disease and 
outcomes.112

Initial investigations in China have suggested that IL-6 is a key 
driver of dysregulated inflammation in COVID-19 patients, 
thereby implicating IL-6 as a pharmacological target for the treat
ment of SARS-CoV-2 infection.172,173 Other cytokines and growth 
factors have also been evaluated for their potential as drug targets, 
including granulocyte-macrophage CSF (GM-CSF),174 TNF-α,175 

vascular endothelial growth factor (VEGF),176 and IL-1β.177 The 
significance of CSs (Figure 1) during COVID-19 has been 
reviewed in greater detail elsewhere.76,121

Using therapeutic mAbs to target CSs is now recognized as 
a disease course-altering and viable immunotherapeutic strategy 
for the clinical management of critically ill patients with 
COVID-19, as evidenced by several clinical trials (summarized 
in Table 2 and Figure 2). Humanized mAbs possess high epitope 
specificity and clinically favorable pharmacokinetic properties 
and are therefore ideal therapeutic tools for tackling the patho
logical and clinical effects associated with CSs.75 Recently, 
a clinical trial demonstrated that lenzilumab, a class IgG1 
kappa humanized mAb targeting CSF2/G-CSF, is associated 
with improved clinical outcomes in patients with SARS-CoV-2 
infection with preexisting conditions.178 Similarly, clinical inves
tigations involving tocilizumab, an IL-6-targeting humanized 
mAb, showed remarkable clinical progress in 91% of patients 
with COVID-19.112 Interestingly, most of these patients only 
received a single dose which was followed by marked improve
ments in respiratory function, rapid defervescence, and success
ful discharge.112 However, cytokine-targeting mAbs are also 
documented to be potentially associated with adverse events.169 

This may impact both the outcomes of clinical trials and post- 
approval use in critically ill COVID-19 patients, particularly 
those with comorbidities.

Adverse events caused by cytokine and related 
pro-inflammatory mediators-targeting mAbs

A questionnaire-based survey involving 1,355 patients who 
were undergoing treatment with cytokine-targeting mAbs for 
immune-mediated inflammatory diseases identified several 
risks associated with the immunotherapy.169 Those patients 
were treated with various therapeutic mAbs including adali
mumab, canakinumab, infliximab, rituximab, sarilumab, and 
tocilizumab. In several patients, the treatment was associated 
with minor adverse events such as respiratory disorders, ner
vous system disorders, or cancer in patients with no 
comorbidities.169 However, in patients with preexisting comor
bidities such as inflammatory rheumatic diseases, 49% (665/ 
1,355) reported adverse drug reactions (ADRs).169 In total, 
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approximately 1,720 ADRs were reported in patients with 
comorbidities, with 65% (1,116 ADRs) being musculoskeletal 
complaints, injection-site reactions, infections, skin reactions, 
fatigue, and gastrointestinal complications.169 Moreover, of the 
patients who developed treatment-associated ADRs, 29 (4%) 
required hospitalization. Patients with the following ADRs 
required hospitalization: infections (n = 5), cardiovascular 
reactions (n = 5), benign or malignant tumors (n = 4), gastro
intestinal complaints (n = 2), and skin reactions (n = 2). The 
authors also reported a higher burden of ADRs in patients with 
smoking habits and in those with other comorbidities such as 
respiratory and psychiatric complaints.169 Collectively, the 
study findings suggest that ADRs develop during the clinical 
application of cytokine-targeting mAbs as a treatment option 
for COVID-19. Thus, ADRs may impede the choice of such 
immunotherapeutic agents for the treatment of critically ill 
COVID-19 patients, particularly those with comorbidities. 
Therefore, the use of cytokine-targeting therapeutic mAbs 
may require constant monitoring for ADRs, thereby posing 
a serious challenge to the already stretched healthcare systems 
during the ongoing COVID-19 pandemic.

The following sections describe each cytokine-targeting mAb 
currently under evaluation for the treatment of COVID-19 and 
provide a summary of the current clinical status and a description 

of the adverse events associated with these mAbs. This informa
tion is also summarized in Table 2.

Adalimumab

There are ongoing phase 3 trials investigating the anti-TNF-α mAb 
adalimumab (Humira®) for the treatment of patients with COVID- 
19. Humira® was originally developed for the treatment of rheuma
toid arthritis and other inflammatory conditions.125 Notably, 
Humira® is the innovator brand of adalimumab and has at least 
six biosimilars.179 Although the potential benefits of adalimumab as 
an investigative strategy for COVID-19 treatment cannot be over
emphasized, adalimumab is not without associated adverse effects, 
particularly in patients with comorbidities such as diabetes mellitus 
and cardiovascular and liver complications. A quick review of the 
safety information datasheet for adalimumab suggests that refine
ment of the dosage and other precautions can circumvent potential 
adverse events associated with the drug.180 Some adverse events that 
have been reported in association with adalimumab treatment 
include a rare type of lymphoma of the liver, spleen, and bone 
marrow as well as heart failure.180 Furthermore, adalimumab is 
potentially associated with hypersensitivity reactions, reactivation 
of hepatitis B virus in carriers, and adverse neurological and hema
tological reactions.180 The co-administration of abatacept with ada

(b) APCs

Macrophage

CD4+ T 
cell

Dendritic cells 

B cells

Activated 
B cell

CD27 memory 
B cell

Antigen

T cell

CD8+ T cell CD4+ T cell

(e) Cytokine storm

Macrophage

T cell

Dendritic cells 

(c) Cellular immunity

(a) Virus entry 
and replication

ACE2

SARS-CoV-2

Plasma cell

(d) Humoral immunity

Figure 1. Simplified representation of COVID-19 pathogenic phases. (a) SARS-CoV-2 may pass through the mucous membrane of the nasal epithelium and lungs by 
binding to the ACE2 receptor and multiply upon entry. (b, c) The entry and replication of the virus primes antigen-presenting cells such as macrophages, B lymphocytes, 
and dendritic cells, which process and present viral antigens to T cells to trigger cellular immunity. Phagocytes, antigen-specific cytotoxic T cells (CD8+), and T helper 
cells (CD4+) interact to produce a stream of cytokines (cytokine storm). (d) T helper cells (CD4+) and naive B cells interact and process SARS-CoV-2-specific antigens to 
mount an antibody response. (e) Simultaneously, large-scale replication of SARS-CoV-2 in the lungs leads to immune cell infiltration, causing an increased level of 
cytokines in the area of infection. This pathologically manifests as vasodilation and increased capillary permeability, causing a phenomenon called cytokine storm. Vital 
organs of the body such as the heart, kidney, and brain also express ACE2 receptors at significant levels, which are implicated in the disease manifestation in patients 
with SARS-CoV-2 infection.ACE2: Angiotensin converting enzyme-2; APCs: Antigen-presenting cells; SARS-CoV-2, severe acute respiratory syndrome coronavirus-2
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limumab has been shown to lead to serious infections.180 Based on 
these observations, a multiplicity of ADRs could become a limiting 
factor in the clinical use of adalimumab in patients undergoing 
treatment with abatacept for rheumatoid arthritis.180 Moreover, 
adalimumab could potentially revive cytochrome P450 activity in 
patients. Therefore, it is likely that the clinical use of adalimumab for 
patients with COVID-19 could enhance the adverse effects of other 
co-administered drugs whose metabolism is dependent on the 
cytochrome P450 system.180

Infliximab

Infliximab (Remicade®) is a TNF-α-targeting chimeric mAb with 
at least seven known biosimilars.179 Infliximab has previously 
been administered to patients with autoimmune conditions, 
such as Crohn’s disease, rheumatoid arthritis, ulcerative colitis, 
psoriatic arthritis, and ankylosing spondylitis.143 Infliximab is 
associated with serious adverse events in patients who have recov
ered from tuberculosis or those with the latent form of the disease, 
those living in regions endemic to histoplasmosis, coccidioidomy
cosis, and other fungal diseases, and those with diabetes mellitus 
or immune system problems. Following treatment of patients 
with COVID-19 with infliximab, adverse events ranging from 
recurring infections to cardiac failure and ailments, hepatitis 
B infections, and disorders of the nervous system such as multiple 
sclerosis and GBS have been reported. These events could be 
associated with potentially fatal side effects. Considering the 
potential serious nature of its ADRs, infliximab is contraindicated 
for use with other TNF-α-based immunotherapies such as ana
kira, abatacept, and tocilizumab.143 These limitations severely 
affect the use of infliximab as a therapeutic choice for critically 

ill patients with pneumonia, thereby curtailing the wide adoption 
of the drug as a standard of care for patients with COVID-19.

Bevacizumab

Bevacizumab is mAb that inhibits VEGF, one of the most 
potent growth factors that increases vascular permeability 
such as that observed in exudative pneumonia. Bevacizumab 
has entered the fray of therapeutics undergoing clinical trials 
for the treatment of patients with COVID-19 with severe 
pneumonia.131,132 Furthermore, in combination with other 
anti-cancer drugs such as fluorouracil, fluoropyrimidine/irino
tecan, and fluoropyrimidine/oxaliplatin, bevacizumab is indi
cated for the treatment of certain malignancies.133 The 
innovator brand for the drug is Avastin, which has at least 
seven biosimilars.179

A review of the prescribing information has highlighted 
several adverse events that may potentially limit the clinical 
use of bevacizumab.134 Because of the wide spectrum of such 
adverse reactions, bevacizumab has been contraindicated in 
patients undergoing major surgical procedures and in pregnant 
and breastfeeding women as well as those planning to get 
pregnant.134 Adverse events that might lead to treatment dis
continuation include hypertensive crisis/hypertensive encepha
lopathy, congestive heart failure, and thromboembolic events.134

Lanadelumab

Lanadelumab is a human IgG1 kappa class mAb that targets plasma 
kallikrein and thus inhibits the generation of inflammation media
tors via the kinin system.148 The FDA has designated this drug as 

Adalimumab

Avdoralimab Bevacizumab

Clazakizumab

Infliximab

Lanadelumab

Siltuximab

Levilimab

Canakinumab
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Otilimab

Cytokine storm

PK
IL-6
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Dendritic cell
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SARS-CoV-2

C5a VEGF TNFα GM-CSF IL 1β
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Figure 2. A simplified schematic illustrating the cytokine storm and monoclonal antibody (mAbs) therapeutics targeting cytokines. In response to an infectious stimulus 
in tissues, lymphocytes, macrophages, dendritic cells, and endothelial cells produce cytokines as a proinflammatory response. The exaggerated output of cytokines, 
termed as cytokine storm, is observed during illnesses such as viral infections, sepsis, multiple organ failure, and cancer. Targeting the cytokine storm is postulated as a 
disease-course altering immunotherapeutic strategy for the clinical management of critically ill patients with COVID-19. This illustration depicts a mAb targeting a 
specific cytokine or growth factor implicated in the pathogenesis of COVID-19.C5a: Complement component 5a; GM-CSF: Granulocyte-macrophage colony-stimulating 
factor; Interleukin-6; IL-1β: Interleukin-1 beta; PK: Plasma kallikrein; IL-6: TNFα: Tumor necrosis factor-alpha; VEGF: Vascular endothelial growth factor
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a breakthrough therapy for the prevention and management of 
patients with hereditary angioedema. Pulmonary edema symptoms 
are often reported during the early stage of respiratory distress in 
patients with COVID-19, and the kallikrein–kinin pathway, speci
fically the generation of bradykinin, has been implicated during 
such pathologies in these patients.181 As previously mentioned, 
studies are targeting this pathway with lanadelumab as an investiga
tional option in adult patients with COVID-19 with less than 90% 
oxygen saturation and an oxygen dependency of at least 3 L/ 
min.149,150

A review of Takhzyro’s webpage on safety information indi
cates that injection-site reactions are the most commonly 
reported adverse effect in patients treated with lanadelumab.148 

Other common side effects include hypersensitivity reactions, 
dizziness, maculopapular rashes, myalgia, and elevated serum 
levels of alanine aminotransferase and aspartate aminotransfer
ase. Although lanadelumab has favorable pharmacokinetic 
properties, the emergence of anti-drug antibodies is possible, 
which thus far has not been shown to impact the PK profile. 
However, lanadelumab is also known to produce additive effects 
when co-administered with C1-esterase inhibitor drugs.148

Clazakizumab

Clazakizumab is a genetically engineered and IL-6-targeting 
humanized IgG1 mAb that typically attains picomolar target 
affinities.136 Currently, clazakizumab is under investigation for 
blocking IL-6 to preserve renal function and minimize renal 
allograft loss due to antibody-mediated rejection.136 

Clazakizumab is an interesting investigational drug used for 
the treatment of patients with COVID-19 with severe-to- 
critically severe pneumonia.137–140 Recently, clazakizumab 
was successfully used to treat a 61-year-old patient with 
COVID-19, and this antibody remains a hopeful choice.182 

Nevertheless, the adverse events associated with the drug 
remain largely uninvestigated.

Levilimab

Levilimab (BCD-089), which was developed by JCS BIOCAD 
(Russia), is another IL-6-targeting mAb that has been used for 
the treatment of several autoimmune disorders, such as rheu
matoid arthritis. Although levilimab was previously evaluated 
for the treatment for various autoimmune diseases, it recently 
passed phase I clinical studies as a treatment for COVID-19.183 

However, results from the trials of the drug for patients with 
arthritis remain unavailable. Nevertheless, levilimab continues 
to be investigated as a treatment choice for patients with severe 
COVID-19-related pathology.151

Olokizumab

Olokizumab is another humanized IL-6-targeting mAb that 
has been indicated for the treatment of rheumatoid arthritis 
in patients who are unresponsive to TNF inhibitor therapy.153 

In combination with the IL-1β inhibitor RPH 104, olokizumab 
is currently being evaluated in clinical trials involving patients 
with COVID-19.184 A study evaluating the safety and efficacy 
of olokizumab in patients with rheumatoid arthritis showed 

that patients experienced chest pain, pneumonia, perineal 
abscess, abnormal liver function as per test results, back pain, 
basal cell carcinoma, mania, and other minor adverse events.153

Siltuximab

Siltuximab is an IL-6-targeting chimeric mAb that is currently 
an immunotherapeutic choice for the treatment of multicentric 
Castleman disease in human herpesvirus-8 and HIV-negative 
patients. Siltuximab is currently under investigation in patients 
with SARS-CoV-2-associated respiratory complications.158 

Some of the serious adverse events associated with siltuximab 
include immunosuppression that may lead to superinfections 
along with back and chest pain or tightness, nausea and vomit
ing, flushing, erythema, irregular heartbeat, breathing difficul
ties, wheezing, dizziness or light-headedness, lip swelling, skin 
rash, headache, and itching.158

Otilimab

The humanized mAb otilimab, which targets GM-CSF, is 
under investigation for the treatment of multiple sclerosis 
and rheumatoid arthritis.156 Otilimab has emerged as an excit
ing investigative therapeutic alternative for TNF-α inhibitory 
drugs in the clinical management of severe COVID-19. 
However, the efficacy and safety of otilimab remain under 
investigation.156

Canakinumab

Canakinumab is a humanized mAb targeting IL-1β that is 
indicated for the treatment of systemic juvenile idiopathic 
arthritis and Still’s disease. Currently under investigation as 
a combinatorial treatment for COVID-19-associated 
pneumonia,129,156,161–164,185–189 canakinumab may inadver
tently induce cytokine release syndrome.165 Additional data 
are expected from ongoing clinical trials in which canakinu
mab is being tested as combinatorial therapy with several 
unspecified standard of care agents for the treatment of 
COVID-19.185 However, as a result of IL inhibition, canakinu
mab is known to predispose patients to serious infections and 
can increase the risk for developing malignancies. Other 
adverse events include nasopharyngitis, diarrhea, rhinitis, nau
sea, headache, bronchitis, gastroenteritis, pharyngitis, muscu
loskeletal pain, vertigo, and weight gain.165

Avdoralimab

Avdoralimab is an mAb that targets the complement system 
and specifically binds and inhibits the C5a receptor, which is 
often overexpressed in certain tumors. Mechanistically, avdor
alimab suppresses T and NK cells and ultimately impedes the 
activities of programmed death ligand-1 checkpoint 
blockers.190 C5a attracts and causes the accumulation of sub
sets of myeloid-derived suppressor T and NK cells.129 As an 
inhibitor of the C5a receptor, avdoralimab may therefore favor 
the anti-tumor activities of T and NK cells. As an investiga
tional drug of choice for the treatment of COVID-19, avdor
alimab is hypothesized to reduce the inflammatory responses 
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in the lung tissue of advanced cases, potentially alleviating 
severe pneumonia. Several adverse events have been reported 
for the combination of avdoralimab and durvalumab, includ
ing fatigue, headache, hypertension, diarrhea with colic, urin
ary tract infections, dyspnea, muscle weakness, decreased 
lymphocyte counts, and anemia.129

SARS-CoV-2-targeting monoclonal antibodies

The entry of SARS-CoV and SARS-CoV-2 into host cells is 
enabled by the interaction of the RBD of the outer membrane- 
based S protein and ACE2 receptors on the host cell.113,186 As 
the mechanism of pre-entry viral attachment is currently uni
versally accepted and known to involve the S protein, therefore, 
the S protein has inevitably become a potential target for 
experimental immunotherapeutic agents. Most of these agents 
are currently undergoing clinical trials. To date, prior research 
experience and abundant SARS-CoV-related data continue to 
inform the identification and development of efficacious SARS- 
CoV-2-targeting mAbs.187–189 With advances in research, it 
will be important to ensure that the novel therapeutic mAbs 
specifically target the SARS-CoV-2-derived S protein or its 
recombinant versions. This is important because some potent 
SARS-CoV-specific neutralizing antibodies such as CR3014 
and m396 have demonstrated poor avidity against the SARS- 
CoV-2 S protein.104,186 Compelling evidence from many 
COVID-19 vaccine research studies has corroborated the 
immunogenicity and potential immunoprotective properties 
of several epitopes located within the S protein.32,33 Early 
investigations on the affinity of neutralizing antibodies to 
SARS-CoV-2 suggest that RBD-binding antibodies are strongly 
correlated with the virus neutralization capability.36,37 Data 
from an investigation involving three antibody subsets purified 
from the plasma of convalescing COVID-19 patients demon
strated that virus neutralization is directed at the SARS-CoV 
-2-RBD.191 Collectively, these findings suggest that the 
S protein RBD is among the most suitable antigenic candidates 
and should be targeted to generate potentially neutralizing 
antibodies against SARS-CoV-2. Moreover, mAbs typically 
have a shorter timeline than small molecules (chemical com
pounds) both in terms of their development, testing, and 
approval.168 As research into the pathophysiology of COVID- 
19 continues to reveal multiple pharmacological targets, bispe
cific mAbs representing dual specificities, through the simulta
neous combination of different antigens or epitopes, could 
potentially serve as viable immunotherapeutic agents.40 

However, the therapeutic development and application of 
novel SARS-CoV-2-targeting mAbs or any disease area to 
produce a marketable drug product requires the fulfillment of 
several pharmacological and regulatory criteria.192,193 We dis
cuss some of the key challenges facing these requirements in 
the later sections of this review.

Pharmacological challenges associated with the 
development of mAbs as drugs

When hybridoma technology was invented in 1975, it ushered 
in a new era of mAb development based on antibody genera
tion from a single cell line bearing identical binding affinities 

for specific targets.194 Although mAbs were then perceived to 
be the magic bullet for the treatment of many severe diseases 
and disabilities, it soon became clear that they were also asso
ciated with therapeutically unfavorable pharmacokinetic prop
erties some of which had potential for serious side effects in 
humans. Furthermore, as most mAbs were of murine origin, 
the constant region (Fc region) did not ideally engage with the 
human immune system to fully exert the anticipated pharma
cological benefits.195 With scientific advancements, techniques 
that manipulated the antibody domains led to the advent of 
chimeric and humanized immunoglobulins with better drug
gable properties.196 The development of SARS-CoV-2-target
ing mAbs for the clinical management of COVID-19 therefore 
require to meet multiple optimization criteria beyond efficacy 
alone.

As therapeutic molecules, mAbs are typically of xenogeneic 
origin and are widely known to cause hypersensitivity 
reactions.197 In turn, this may additively affect the pharmaco
kinetic parameters of therapeutic mAbs.197 Although therapeu
tic mAbs are systemically administered, their bioavailability is 
typically poor compared with that of other small molecules.170 

This is possibly due to the proteolytic cleavage of mAbs within 
the interstitial fluid and lymphatic system. Among the various 
immunoglobulin isotypes, IgGs have better bioavailability 
because their Fc region specifically binds to Fc receptors 
(FcRn) to form the IgG–FcRn complex. This in turn facilitates 
the release of mAbs back into circulation, thereby ensuring 
optimal antigen–antibody interactions.170,197

mAbs are large therapeutic molecules (~150 kDa) that are 
typically administered systemically by intravenous, subcuta
neous, or intramuscular injections. From the injection site, 
absorption is achieved through lymphatic uptake, and the 
distribution is therefore largely restricted to vascular and inter
stitial fluids. Unlike small molecules, proteolysis is the process 
of metabolic clearance with excretion largely mediated by the 
FcRn receptor.197 The pharmacokinetic behavior of mAbs dif
fers from small molecules and is typically both dose-dependent 
and non-linear.198 This makes the pharmacokinetic predic
tions for mAbs challenging. Target-mediated drug disposition 
(TMDD) is another key parameter that complicates the devel
opment of mAbs as antiviral therapeutic agents. The binding 
affinities of mAbs to their target, antigen density, and antigen 
turnover rate could be significantly impacted by the different 
stages of viremia in patients with COVID-19. The uncertain 
factors in these patients cause a significant challenge in refining 
the dose as a way of achieving a therapeutically favorable 
pharmacokinetic profile. TMDD may also lead to extremely 
unpredictable and rapid removal of mAbs from circulation at 
non-saturable dose ranges. Additionally, the PK profiles of 
mAbs could be mediated by nonspecific mechanisms such as 
pinocytosis and phagocytosis.197 All these factors explain the 
extremely wide range of clearance values (90–560 mL/day) and 
therefore half-lives (11–30 days) of marketed mAbs. 
Additionally, it is challenging for mAbs to achieve a favorable 
distribution from the blood compartment to the peripheral 
tissue, making it harder to attain therapeutic concentrations. 
Compartmental (population) analyses of mAb pharmacoki
netics have shown small values for intercompartmental clear
ance (Q = 20–40 mL/h), suggesting that distribution to 
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peripheral tissues progresses slowly.199 Challenges faced in the 
optimization of pharmacodynamics and pharmacokinetic 
parameters for mAbs are discussed elsewhere in greater 
detail.170,197,200 Because of the multiple hurdles that must be 
overcome for a mAb to obtain approval as a therapeutic agent 
for the clinical management of patients with COVID-19, infor
mation obtained from the development of mAbs for other 
infectious diseases suggest that TMDD is a key determinant.

Challenges in global affordability of mAbs as drugs of 
choice

The cost-effectiveness of mAbs for the treatment of critical patients 
with COVID-19 and in general for the control of the pandemic is 
another significant concern, particularly in low-income countries; 
furthermore, whether health insurance providers will agree to insur
ance cover the treatment remains a concern. For instance, the 
annual cost for treating a patient with cancer with antibodies is 
approximately USD 35,000. Although the use of antibodies for 
critically ill patients with COVID-19 may not be as extensive, the 
pricing and affordability of mAbs across the economic spectrum is 
highly questionable.201 According to a conservative estimate from 
2007, pharmaceutical companies typically invest USD 40 USD– 
$650 M toward the development of mAbs as therapeutic 
molecules.202 A retrospective analysis demonstrated that the devel
opment of mAbs typically takes approximately 7–8 years and 
another year for obtaining approvals from the FDA, with 
a possibility of priority review potentially shaving off approximately 
8 months for approval.203

Generally, therapeutic mAbs for the treatment of viral diseases 
demonstrate a high median total cost of care, which could be 
another prohibitive factor. For example, palivizumab, a mAb target
ing respiratory syncytial virus, has a median cost of care ranging 
from British £1361–£2630.204 Although palivizumab is an extremely 
effective drug, its availability as a prophylaxis or standard of care is 
unlikely in low-income countries.205

Experiences from precision medicine-based screening for 
Kirsten ras oncogene mutation in metastatic colorectal cancer 
have demonstrated that mAb-based treatments with cetuximab 
and panitumumab are cost-effective.206

Concluding remarks

The COVID-19 pandemic has dealt humanity a serious challenge 
and expediting research efforts toward development of efficacious 
vaccines and antivirals are the most promising options that will 
enable humanity to prevail over this pandemic. As we witness the 
approvals of many promising COVID-19 vaccine candidates, the 
duration it is likely to take to scale up and administer the vaccine to 
cover the humanity is a core challenge. Despite of vaccination 
coverage, there is high likelihood of COVID-19 to become estab
lished as a sporadic disease, arguably needing efficacious antiviral 
drugs, including therapeutic antibodies as an integral strategy for 
clinical management of severe COVID-19 cases. Convincing inves
tigational evidence on the therapeutic promise of antibody-based 
options for controlling the viremic phase and alleviating the disease- 
associated pathologies suggests that this approach will be pharma
cologically viable. However, an essential strategy involves the 
research and development of a treatment paradigm that will cluster 

patients with COVID-19 with preexisting conditions for the use of 
approved anti-SARS-CoV-2 mAbs or repurposed mAbs targeting 
cytokines. As numerous investigations continue to validate the 
therapeutic success of mAbs, the cost-effectiveness of the produc
tion of these drugs, the development of biosimilars to novel mAbs 
without patent restrictions, continuous and effective research in 
identifying reservoir species of CoVs, and financial support or 
affordable accessibility to therapeutic mAbs will dictate the global 
utility of these therapeutic magic bullets in controlling this 
pandemic.
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